Multijunction Ultralight Solar Cells and Arrays, Phase II

Completed Technology Project (2005 - 2007)

Project Introduction

There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation of ultralight space payloads. An emerging technology with promise to meet these ambitious goals are solar cells based on very thin films of discrete layers or interpenetrating networks (IPNs) of organic donors and acceptors. It is also recognized in the field of thin film inorganic solar cells, that it is possible to stack cells tuned to the blue, green and red portions of the solar spectrum, thus harvesting photons with less degradation of their energy. Theoretical efficiencies for multijunction solar cells are ~70% compared to ~30% for single junction devices. Indeed, these multijunction solar cells hold the current record for solar conversion efficiency. In this proposed joint STTR program between EIC Laboratories and the University of Florida, we will develop multijunction organic donor-acceptor solar cells as a means to achieve higher efficiencies than can be realized with single junction devices. Phase II will continue with development of high mobility, bandgap engineered organic donors and acceptors, as well as develop three junction devices and scaled up devices on lightweight flexible polymer substrates.

Primary U.S. Work Locations and Key Partners

Multijunction Ultralight Solar Cells and Arrays, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Multijunction Ultralight Solar Cells and Arrays, Phase II

Completed Technology Project (2005 - 2007)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio
EIC Laboratories,	Supporting	Industry	Norwood,
Inc.	Organization		Massachusetts

Primary U.S. Work Locations	
Massachusetts	Ohio

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic